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Abstract

In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed
by numerically integrating a system of stochastic differential equations for Lagrangian particles. A set of parallel algo-
rithms is proposed to provide an efficient solution of the PDF transport equation modeling the joint PDF of turbulent
velocity, frequency and concentration of a passive scalar in geometrically complex configurations. In the vicinity of walls
the flow is resolved by an elliptic relaxation technique down to the viscous sublayer, explicitly modeling the high anisotropy
and inhomogeneity of the low-Reynolds-number wall region without damping or wall-functions. An unstructured Eulerian
grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain (i.e., the
mean pressure and the elliptic relaxation tensor) and to track particles. All three aspects regarding the grid make use of the
finite element method employing the simplest linear shapefunctions. To model the small-scale mixing of the transported
scalar, the interaction by exchange with the conditional mean (IECM) model is adopted. An adaptive algorithm to com-
pute the velocity-conditioned scalar mean is proposed that homogenizes the statistical error over the sample space with no
assumption on the shape of the underlying velocity PDF. Compared to other hybrid particle-in-cell approaches for the
PDF equations, the current methodology is consistent without the need for consistency conditions. The algorithm is tested
by computing the dispersion of passive scalars released from concentrated sources in two different turbulent flows: the fully
developed turbulent channel flow and a street canyon (or cavity) flow. Algorithmic details on estimating conditional and
unconditional statistics, particle tracking and particle-number control are presented in detail. Relevant aspects of perfor-
mance and parallelism on cache-based shared memory machines are discussed.
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1. Introduction

Probability density function (PDF) methods [1-3] have been developed as an alternative approach to
moment closure techniques to simulate turbulent flows with a higher level of statistical description. While tra-
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ditional moment closures (such as the k—¢ method [4] or various Reynolds stress and related models [5-8]) seek
to directly determine the mean and variance of the underlying turbulent velocity field, the aim of PDF meth-
ods is different. Instead of computing statistical moments (e.g., mean momentum and Reynolds stresses)
explicitly, the full probability density function is sought, which in turn can provide higher order moments
if necessary. Shifting the problem to a higher level is beneficial in a number of ways. For example, one-point
statistics (such as advection and chemical reaction) appear in mathematically exact form in the PDF transport
equations, thus closure assumptions for these terms are not needed. The problem is most severe in chemically
reacting turbulent flows, where previous attempts to provide moment closures for the usually highly nonlinear
chemical source terms resulted in errors of several orders of magnitude [9]. In PDF methods, the closure prob-
lem is not eliminated, since two-point statistics (such as dissipation) still require modeling assumptions. Nev-
ertheless, since fundamental physical processes are treated exactly, a more accurate representation can be
achieved. A higher level statistical description also provides more information that can be used in the con-
struction of closure models.

The development of PDF methods has mostly been centered on chemically reactive turbulent flows on sim-
ple geometries [10,11], although applications to more complex configurations [12,13] as well as to atmospheric
flows [14,15] have also appeared. A large variety of compressible and incompressible laminar flows bounded
by bodies of complex geometries have been successfully computed using unstructured grids [16]. The flexibility
of these gridding techniques has also been exploited recently in mesoscale atmospheric modeling [17]. Signif-
icant advances in automatic unstructured grid generation [18], sophisticated data structures and algorithms,
automatic grid refinement and coarsening techniques [19] in recent years have made unstructured grids a com-
mon and convenient choice of spatial discretization in computational physics. The success of unstructured
grids seems to warrant exploiting their advantages in conjunction with PDF modeling. For reasons to be elab-
orated on later, in PDF methods the usual choice of representation is the Lagrangian framework with a
numerical method employing a large number of Lagrangian particles. A natural way to combine the advan-
tages of existing traditional Eulerian computational fluid dynamics (CFD) codes with PDF methods, there-
fore, is to develop hybrid methods.

Using structured grids, a hybrid finite-volume (FV)/particle method has been developed by Muradoglu et al.
[20]and Jenny et al. [21], wherein the mean velocity and pressure fields are supplied by the FV code to the particle
code, which in turn computes the Reynolds stress, scalar fluxes and reaction terms. Different types of hybrid
algorithms are possible depending on which quantities are computed in the Eulerian and Lagrangian frame-
works. For a list of approaches see Muradoglu et al. [20]. Another line of research has been centered on the com-
bination of large eddy simulation (LES) with PDF methods [22,23]. This approach is based on the definition of
the filtered density function (FDF) [9] which is used to provide closure at the residual scale to the filtered LES
equations. Depending on the flow variables included in the joint FDF, different variants of the method have
been proposed providing a probabilistic treatment at the residual scale for species compositions [24], velocity
[25]and velocity and scalars [26]. A common feature of these methods is that certain consistency conditions have
to be met, since some fields are computed in both the Eulerian and Lagrangian frameworks. Further advances
on consistency conditions and correction algorithms for hybrid FV/particle codes have been reported by Mura-
doglu et al. [27] and Zhang & Haworth [28], who also extend the hybrid formulation to unstructured grids. Fol-
lowing that line, a hybrid algorithm for unstructured multiblock grids has recently been proposed by Rembold
& Jenny [29]. Beside enforcing the consistency of redundantly computed fields, hybrid methods also have to be
designed to ensure consistency at the level of the turbulence closure between the two frameworks. For example,
the simplified Langevin model (SLM) [30] is equivalent to Rotta’s model at the Reynolds stress level [31]. Thus
the use of a k—¢ model in the Eulerian framework and of a SLM PDF model in the Lagrangian framework can-
not be consistent [20]. In this paper, a different approach is taken by representing all turbulent fields by Lagrang-
ian particles and employing the grid (a) to compute only inherently Eulerian quantities (that are only
represented in the Eulerian sense), (b) to extract Eulerian statistics and (c) to locate particles throughout the
domain. Because the resulting method is not a hybrid one, none of the fields are computed redundantly and
the computation can remain fully consistent without the need of correction algorithms. We employ the finite
element method (FEM) in all three aspects mentioned above in conjunction with Eulerian grids. The combined
application of the FEM and the decoupling of the Eulerian and Lagrangian fields also have important conse-
quences regarding particle boundary conditions as compared to the “flux-view” of FV methods.
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In those turbulent flows where an accurate description of the mean velocity field is required in the vicinity of
walls, adequate representation of the near-wall low-Reynolds-number effects is essential. High-Reynolds-num-
ber turbulence closures, therefore, have to be adjusted close to walls. Possible modifications involve damping
functions [32-35] or wall-functions [36-39]. For those flows, where accurate higher order statistics are also
required at the wall, capturing the near-wall inhomogeneity and anisotropy of the Reynolds stress tensor is
crucial. Following Durbin’s elliptic relaxation technique [40], Dreeben and Pope [41] extended the PDF
method to include wall-treatment. In their model, only the no-slip and impermeability conditions are imposed
on particles close to walls and an elliptic equation for a tensorial quantity brings out the non-local effect of the
wall on the Reynolds stresses. Wall-function treatment has also been developed for the PDF framework [42],
providing the option of the usual trade-off between computational expense and resolution at walls. For our
current purposes, we adopt the elliptic relaxation technique and resolve the flow all the way to the wall.

Beside in chemically reactive turbulent flows, the transport and dispersion of scalars (e.g., species concen-
tration or pollution) is a central issue in computational atmospheric physics, as well. Reviews on the subject
have been compiled by Warhaft [43] and Karnik & Tavoularis [44]. In addition to the velocity field, we include
in our formulation the capability to model the concentration of a passive scalar released from a concentrated
source, employing the interaction by exchange with the conditional mean (IECM) model to incorporate the
effects of small-scale mixing on the scalar. For the computation of the velocity-conditioned scalar mean
required in the IECM model, we propose an adaptive algorithm that makes no assumption on the shape of
the underlying velocity PDF and which, using a dynamic procedure, automatically homogenizes the statistical
error over the sample space. We extend our description of the algorithm to shared memory parallelism and
highlight relevant aspects of serial and parallel efficiency.

The purpose of this research is to continue to widen the applicability of PDF methods in practical appli-
cations, especially to more realistic flow geometries by employing unstructured grids. The current work is a
step in that direction, where we combine several models and develop a set of parallel algorithms to compute
the joint PDF of the turbulent velocity, characteristic frequency and scalar concentration in complex domains.
Complementary to hybrid FV/particle methods, we provide a different methodology to exploit the advantages
of unstructured Eulerian meshes in conjunction with Lagrangian PDF methods. Two simple flows, a fully
developed turbulent channel flow and a street canyon (or cavity) flow, are used to test several aspects of
the algorithms. Both of these cases are two-dimensional; however, the methodology is general enough so that
the extension from 2d triangles to 3d tetrahedra should be straightforward.

The paper is organized as follows. In Section 2 the governing equations are described. Section 3 presents
details of the solution algorithm with the underlying numerical methods. The effects of several algorithmic
characteristics on selected one-point statistics are explored on the two testcases in Section 4: scalar dispersion
from concentrated sources is examined in a fully developed turbulent channel flow in Section 4.1 and in a tur-
bulent street canyon in Section 4.2. Finally, some conclusions are drawn and future directions are outlined in
Section 5.

2. Governing equations

The governing system of equations for a passive scalar released in a viscous, Newtonian, incompressible
fluid is written in the Eulerian framework as

oU;
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where U;, P, p,v, ¢ and I are the Eulerian velocity, pressure, constant density, kinematic viscosity, scalar con-
centration and scalar diffusivity, respectively. Based on these equations an exact transport equation can be
derived for the one-point, one-time Eulerian joint PDF of velocity and concentration f(V,y; x, ¢) [2,45],
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where V and y denote the sample space variables of the stochastic velocity U(x,¢) and concentration ¢(x, ¢)
fields, respectively and the pressure P is decomposed into its mean (P) and fluctuation part p. A remarkable
feature of Eq. (4) is that the effects of convection and viscous diffusion (processes of critical importance in
wall-bounded turbulent flows) are in closed form, thus require no modeling assumptions. The last three terms,
however, are unclosed. These are respectively, the effects of dissipation of turbulent kinetic energy, pressure
redistribution and the small-scale mixing of the transported scalar due to molecular diffusion. The joint
PDF f(V,y;x,t) contains all one-point statistics of the velocity and scalar fields. The price to pay for the in-
creased level of description (compared to traditional moment closures) is that in a general three-dimensional
turbulent flow f(V,y; x,¢) is a function of eight independent variables. This effectively rules out the applica-
tion of traditional techniques like the finite difference, finite volume or finite element methods for a numerical
solution. While in principle this high-dimensional space could be discretized and (after appropriate modeling
of the unclosed terms) Eq. (4) could be solved with the above methods, the preferred choice in the PDF frame-
work is to use a Lagrangian Monte—Carlo formulation. As opposed to the other techniques mentioned, the
computational requirements increase only linearly with increasing problem dimension with a Monte—Carlo
method. Another advantage of employing a Lagrangian-particle based simulation is that the governing equa-
tions may take a significantly simpler form than Eq. (4).

In a Lagrangian formulation, it is assumed that the motion of fluid particles along their trajectory is well
represented by a diffusion process, namely a continuous-time Markov process with continuous sample paths
[46]. Such a process was originally proposed by Langevin [47] as a stochastic model of a microscopic particle
undergoing Brownian motion. Pope [45] shows that Langevin’s equation provides a good model for the veloc-
ity of a fluid particle in turbulence. It is important to appreciate that the instantaneous particle velocities mod-
eled by a Langevin equation do not represent individual physical fluid particle velocities. Rather, their
combined effect (i.e., their statistics) can model statistics of a turbulent flow. Therefore, the numerical particles
can be thought of as an ensemble representation of turbulence, each particle embodying one realization of the
flow at a given point in space and time. At a fundamental level, an interesting consequence of this view is that
this definition does not require an external (spatial or temporal) filter explicitly, as the classical Reynolds aver-
aging rules and large eddy simulation filtering do. For example, in unsteady homogeneous or steady inhomo-
geneous high-Reynolds-number flows, the natural Reynolds-average to define is the spatial and temporal
average, respectively. In unsteady and inhomogeneous flows however, one is restricted to employ temporal
and/or spatial filters leading to the approaches of unsteady Reynolds-averaged Navier-Stokes (URANS)
and LES methods, respectively [48]. In the PDF framework the statistics are defined based on a probability
density function. In the current case, for example, the mean velocity and Reynolds stress tensor are obtained
from the joint PDF f as

Z o0 Z o0
(Ui)(x,1) = Vif (Vs x,6)dydV, (5)
7.7
ui; (x,t) = . Vi= UV = U )f (V5 x, 1) dypd (6)

where the velocity fluctuation is defined as u; = V; — (U,). These quantities are well-defined mathematically
[46,45], independently of the underlying physics, the state of the flow (i.e., homogeneous or inhomogeneous,
steady or unsteady), the numerical method and the spatial and temporal discretization. Therefore the promise
of a probabilistic view of turbulence (as in PDF methods) at the fundamental level is a more rigorous statis-
tical treatment.

An equivalent model to the Eulerian momentum Eq. (2) in the Lagrangian framework is a system of gov-
erning equations for particle position X; and velocity U; increments [49]
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where the isotropic Wiener process d; [50] is identical in both equations (numerically, the same exact series
of Gaussian random numbers with zero mean and variance df) and it is understood that the Eulerian fields on
the right hand side are evaluated at the particle locations X;. Since Eq. (8) is a diffusion-type stochastic dif-
ferential equation with a Gaussian white noise (i.e., a Wiener process), it is equivalent to the Fokker—Planck
equation that governs the evolution of the probability distribution of the same process [46]. Egs. (7) and (8)
represent the viscous effects exactly in the Lagrangian framework. Particles governed by these equations are
both advected and diffused in physical space. After Reynolds decomposition is applied to the velocity and

pressure, Eq. (8) results in
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where the last three terms are unclosed. To model these terms, we adopt the generalized Langevin model
(GLM) of Haworth & Pope [30]
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where G;; is a second-order tensor function of velocity statistics, Cy is a positive constant, ¢ denotes the rate of
dissipation of turbulent kinetic energy and d’ is another Wiener process. Because of the correspondence be-
tween stochastic Lagrangian models and Reynolds stress closures [31], different second order models can be
realized with the Langevin Eq. (10), depending on how G; is specified. An advantage of the GLM family
of models is that Eq. (10) ensures realizability as a valid Reynolds stress closure, provided that Cy is non-neg-
ative and that Cy and G;; are bounded [45]. Compared to Reynolds stress closures, the terms in G;; and Cy
represent pressure redistribution and anisotropic dissipation of turbulent kinetic energy. Far from walls, these
physical processes can be adequately modeled by appropriate local (algebraic) functions of the velocity statis-
tics. However, such local representation is in contradiction with the large structures interacting with the wall
and the viscous wall region [51]. The traditionally employed damping or wall-functions, therefore, are of lim-
ited validity in an approach aiming at a higher-level statistical description. To address these issues, Durbin [40]
proposed a technique to incorporate the wall-effects on the Reynolds stress tensor in a more natural fashion.
In his approach, an elliptic equation is employed to capture the non-locality of the pressure redistribution at
the wall, based on the analogy with the Poisson equation which governs the pressure in incompressible flows.
The methodology also provides more freedom on controlling the individual components of the Reynolds
stress tensor at the wall, such as the suppression of only the wall-normal component representing wall-block-
ing. Dreeben & Pope [41] incorporated Durbin’s elliptic relaxation technique into the PDF method, by spec-
ifiying G;; and C, through the tensor g, as

Py — 59y ~2p, ut,

Gl‘jijzj and C():#, (11)
where k& = %(uiu,) denotes the turbulent kinetic energy. The non-local quantity g;; is specified with the follow-
ing elliptic relaxation equation
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is the Reynolds stress anisotropy, (w) denotes the mean characteristic turbulent frequency and C;, Cy, s, C,

are model constants. The characteristic lengthscale L is defined by the maximum of the turbulent and Kol-
mogorov lengthscales

3/2 3 1/4#

L:CLmaX C;’T,C,, ; y (16)

with

where n; is the unit wall-normal of the closest wall-element pointing outward of the flow domain, while C; and
C, are model constants. The right hand side of Eq. (12) can be any local model for pressure redistribution;
here we follow Dreeben & Pope [41] and use the stochastic Lagrangian equivalent of a modified isotropization
of production (IP) model proposed by Pope [31]. It is apparent that Eq. (12) acts like a blending function be-
tween the low-Reynolds-number near-wall region and the high-Reynolds-number free turbulence. Close to the
wall, the elliptic term on the left hand side brings out the non-local, highly anisotropic behavior of the Rey-
nolds stress tensor, whereas far from the wall the significance of the elliptic term vanishes and the local model
on the right hand side is recovered. A difference compared to the original PDF model is the application of the
elliptic term L>V? ©,; as proposed originally by Durbin [40], as opposed to LV? (Lg,;), since no visible improve-
ment has been found by employing the latter, numerically more expensive term.

The description of the computation of the mean-pressure gradient in Eq. (10) is deferred to Section 3.2. We
complete the closure of Eq. (10) by specifying the turbulent kinetic energy dissipation rate ¢ as [41]

e = (0) k+1C{w) | (18)

where C7 is a model constant and the stochastic turbulent frequency w is calculated employing the model of
van Slooten et al. [52]

do = —Cs3(w) (0 — (0))df — S,(w)odt + 2C;C4(0) o l/de7 (19)

where dW is a scalar-valued Wiener-process and S, is a source/sink term for the mean turbulent frequency

S(/) = C(UZ - Cwl ?a (20)

where P = — wu; 0(U;)/0x; is the production of turbulent kinetic energy and Cj, Cs, C,,y and C,, are model
constants. A simplification of the original model for the turbulent frequency employed by Dreeben & Pope
[41] is the elimination of the ad-hoc source term involving an additional model constant, since in our case-
studies we found no obvious improvements by including it. This completes the model for the joint PDF of
velocity and the (now included) characteristic turbulent frequency .

Since a passive scalar, by definition, has no effect on the turbulent velocity field, modeling the pressure
redistribution and dissipation have been discussed independently from the scalar, i.e., it has been assumed that
in Eq. (4) the following hold

oU; oU; oU,; oU;

il iy § G — = U= 21
vaxk Oxy U=V.¢=y vaxk Ox v=v, 2l
1 op 1 op

pax’_U Vip =y p@x,-U V (22)

However, the opposite, that the micromixing of the scalar can be modeled independently of ¥, cannot be as-
sumed in general [53]. A simple mixing model is the interaction by exchange with the mean (IEM) [54,55],
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which models the conditional scalar diffusion in Eq. (4) independent of the underlying velocity field, i.e.,
assuming I'V¢ U=V, =y = I'V’$p ¢ = .In the Lagrangian framework, the IEM model is written
as

1
dy = —— (¥ —(¢))dr, (23)
where f,, is a micromixing timescale. It has been pointed out, however, that the assumption that the scalar
mixing is independent of the velocity bears no theoretical justification and is at odds with local isotropy of
the scalar field [56,53]. On the other hand, the interaction by exchange with the conditional mean (IECM)
model does take the velocity field into consideration by employing the velocity-conditioned mean instead

of the unconditional mean as

1

dy = —— () — ($|U = ¥))dr. (24)
This model represents the physical process of dissipation by relaxation of the particle concentration iy towards
the conditional scalar mean with timescale #,,. It can be shown that in the case of homogeneous turbulent mix-
ing with no mean scalar gradient the IEM and IECM models are equivalent since the velocity and scalar fields
are uncorrelated [56]. In that case the micromixing timescale ¢, is proportional to the Kolmogorov timescale
T = k/e. In the current study we focus on transported scalars released from concentrated sources in flow do-
mains surrounded by no-slip walls, thus we expect the scalar fields to be highly inhomogeneous. Accordingly,
we follow [57] and specify the micromixing timescale as a function of the location r

" #
-
1/3 y

. r d, k
tm(r):mln C_g :f) +Ctm;max E,CT Z s (25)

where ry denotes the radius of the source, U, is a characteristic velocity at r which we take as the absolute
value of the mean velocity at the given location, d, is the distance of the point r from the source, while C;
and C, are model constants.

This completes the model for the joint PDF of turbulent velocity, frequency and scalar. The model is ‘com-
plete’ in the sense that the equations are free from flow-dependent specifications [45]. Thus, in principle, it is
generally applicable to any transported passive scalar released into an incompressible, high-Reynolds-number
flow from a concentrated source. To summarize, the flow is modeled by a large number of Lagrangian par-
ticles representing a finite sample of all fluid particles, which can be thought of as different realizations of
the underlying stochastic fields. Consequently, employing appropriate ensemble averages, all one-point statis-
tics can be obtained. Numerically, each particle has its position X; and with its velocity U; carries its charac-
teristic frequency w and scalar concentration y. These quantities are advanced by Egs. (7), (10), (19) and (24),
respectively.

3. Numerical implementation

The numerical solution algorithm is based on the time-dependent particle governing Egs. (7), (10), (19) and
(24). An adaptive timestepping strategy to advance the system is described in Section 3.1. All Eulerian statistics
required in these equations need to be estimated at the particle locations at the given instant in time. This is
performed by an unstructured Eulerian grid that discretizes the flow domain, which can be conveniently
refined around regions where a higher resolution is necessary. The methods used to compute unconditional
statistics, their derivatives and conditional statistics are described in Sections 3.3, 3.4 and 3.5, respectively.
The grid is also used to solve the elliptic relaxation Eq. (12) and to solve for the mean pressure required in
Eq. (10). The main characteristics of the solution of these two Eulerian equations together with a projection
method to obtain the mean pressure are described in Section 3.2. In order to identify which particles contribute
to local statistics, the particles need to be continuously followed as they travel throughout the domain. The
particle tracking algorithm that is used for this purpose is described in Section 3.6. In complex configurations,
where the spatial resolution can differ significantly from one region to another, an algorithm is necessary to
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ensure that the number of particles in every computational element is above a certain threshold, so that mean-
ingful statistics can be computed. We present an algorithm that accomplishes this task in Section 3.7. The
boundary conditions at no-slip walls applied to particles, to the elliptic relaxation Eq. (12) and to the mean
pressure are described in Section 3.8. Some aspects of parallel random number generation are described in Sec-
tion 3.9. An overview of the solution procedure with the execution profile of a timestep is given in Section 3.10.

3.1. Timestepping procedure

To discretize in time the governing Egs. (7), (10), (19), (24) we apply explicit forward Euler-Maruyama [58]
timestepping. The size of the timestep is estimated in every step based on the Courant-Friedrichs-Lewy (CFL)
[59] condition as
min /4,

At = Copp ——5—,
" max (Z)

(26)
n 2

where A4, is the average element area around gridnode n and Z = (V, V5, V3, w,¥) is the vector of particle

properties. According to Eq. (26) we find the smallest characteristic edge length (defined by the square-root

of the element area) on the whole domain and divide it by the largest characteristic velocity (based on the

length of the generalized mean velocity vector (Z)). This conservative approximation is multiplied by a

CFL constant of Ccgr, = 0.7.
3.2. Solution of the Eulerian equations: mean pressure and elliptic relaxation

In incompressible flows the pressure establishes itself immediately through the pressure-Poisson equation,
which is a manifestation of the divergence constraint V - U = 0 expressing mass conservation. The numerical
difficulties arising from the straightforward discretization of this equation in finite difference, finite volume and
finite element methods are reviewed in [16]. Several different methods have been devised to deal with these
issues, which stem from the fact that the mass conservation equation decouples from the momentum equation
and acts on it only as a constraint, which may result in the decoupling of every second gridpoint thereby
numerically destabilizing the solution. Some of these methods are: the use of different functional spaces for
the velocity and pressure discretization, artificial viscosities, consistent numerical fluxes, artificial compressibil-
ity and pressure projection schemes. For our purposes we adopt the pressure projection approach.

Additionally, due to the stochastic nature of the simulation, in PDF methods the Eulerian statistics and
their derivatives are subject to considerable statistical noise. Fox [60] suggests three different ways of calculat-
ing the mean pressure in PDF methods. The first approach is to extract the mean pressure field from a simul-
taneous consistent Reynolds stress model solved using a standard CFD solver [61]. This approach solves the
noise problem although it leads to a redundancy in the velocity model. The second approach attacks the noise
problem by computing the so-called ‘particle-pressure field’ [62]. This results in a stand-alone transported PDF
method and the authors successfully apply it to compute a compressible turbulent flow. The third approach is
the hybrid methodology, which uses an Eulerian CFD solver to solve for the mean velocity field and a particle-
based code to solve for the fluctuating velocity [20]. This method is made consistent by the careful selection of
turbulence models in the Eulerian and Lagrangian frameworks and the use of consistency conditions.

A different approach is proposed here. We adopt a modified version of the pressure projection scheme orig-
inally proposed by Chorin [63] in the finite difference context, which has been widely used in laminar flows.
The modification compared to the original projection scheme involves solving for the difference of the pressure
between two consecutive timesteps, instead of the pressure field itself. This ensures that at steady state the
residuals of the pressure correction vanish [16]. We adopt the scheme in the Lagrangian—Eulerian setting
and combine the projection algorithm with the particle equations as follows.

The idea of pressure projection is to first predict the velocity using the current flow variables without taking
the divergence constraint into consideration. In a second step, the divergence constraint is enforced by solving
a pressure-Poisson equation. Finally the velocity is corrected using the new pressure field, resulting in a diver-
gence-free velocity-field. Thus, for an explicit (forward Euler—-Maruyama) time-integration of the particle
velocity, one complete timestep (n — n + 1) is given by:
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Since the velocity field is fully represented by particles, the velocity prediction (27) and correction (31) steps are
applied to particles. The above procedure ensures that the Poisson equation for the mean pressure is satisfied
at all times, thus the joint PDF representing an incompressible flow satisfies realizability, normalization and
consistency conditions [2] in every timestep. To stabilize the computation of the mean pressure a small arti-
ficial diffusion term is added to the divergence constraint in Eq. (28)

1

VA" =G VP (32)
where C, is a small constant, e.g., C, = 10, which results in the stabilized version of the pressure projection
step

Leey e =4

; -= v.<U>*—Cp%V2<P>" : (33)

Both the elliptic relaxation (12) and pressure projection (33) equations are solved with the finite element
method using linear shapefunctions on a grid consisting of triangles [16]. The FEM coefficient matrices are
stored in block compressed sparse row format [64]. The resulting linear systems are solved by the method
of conjugate gradients combined with a Jacobi preconditioner. While the elliptic Eq. (12) for the tensor g;;
may appear prohibitively expensive for larger meshes, the equation is well-conditioned and the iterative solu-
tion converges in a few iterations starting from an initial condition using the solution in the previous timestep.

3.3. Estimation of Eulerian statistics

During the numerical solution of the governing equations, Eulerian statistics need to be estimated at dif-
ferent locations of the domain. Since the joint PDF contains information on all one-point statistics of the
velocity, frequency and scalar concentration fields, these are readily available through appropriate averages
of particle properties. For example, the mean velocity at a specific location in space and time is obtained
as the integraé over all sample space of the joint PDF f(Z)

(U= Vif(Z;x,1)dZ, (34)

where Z denotes the vector of all sample space variables Z = (V, V,, V3, w, ). For brevity we omit (but as-
sume) the space and time dependence of the statistics. In traditional particle-codes the estimation of statistics
is usually performed by kernel estimation using weight-functions [45]. In particle-in-cell methods [65] an Eule-
rian mesh covers the computational domain and means are computed in each element or gridpoint. The latter
approach is followed here and Eq. (34) is computed by an ensemble average over all particle velocities in the
vicinity of x
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X
()=t

S (33)

p=1
where N is the number of particles participating in the local mean at x and U is the velocity vector of particle
p. In the first pass an element-based mean is computed considering the particles in a given element. In the sec-
ond pass, these element-based means are transferred to nodes of the grid by calculating the average of the ele-
ments surrounding the nodes. Wherever Eulerian statistics are needed at particle locations, like in Eq. (10), the
average of the nodal values are used for all particles residing in a given element. These node-based statistics are
also used in the elliptic relaxation (12) and pressure projection (33) equations. An advantage of this two-pass
procedure is that a natural smoothing is inherent in transferring statistics from elements to nodes. Using only
nodal statistics to update particles also makes the method more robust, since it provides an efficient guard
against the unwanted occurrence of empty elements, i.e., elements without any particles. The problem of high
statistical error caused by an empty element is mitigated by the other elements surrounding the given node.
Linked lists [16] provide an efficient access of unstructured-grid-based data from memory (e.g., elements sur-
rounding points, points surrounding points, etc.). Once first-order statistics, like the mean velocity, are com-
puted, higher order statistics are calculated by the same procedure. As an example, the Reynolds stress tensor
is obtained by
Z ) | X
u; = (Vi (U))(V;— U; )f(Z)dZ == (U] = (U))Uj— U;). (36)

N J
p=1

3.4. Derivatives of Eulerian statistics

From finite element approximation theory, an unkown function ¢g(x) given in nodes can be approximated
over an element as

q(x) = N'(x)q;, (37)

where 7 is the number of nodes of the element, g; is the value of the function ¢ in node j and N’ are finite
element shapefunctions. For speed and simplicity, we use only a single type of element (triangle) with linear
shapefunctions, which are written in the local (&, ) coordinate system of the element as (see also Fig. 1)

NA =1 - é -,
NB =¢, (38)
N€ =y.

Employing the approximation in Eq. (37), the spatial gradient of the expectation of any function Q(Z; x, t) can
be computed over an element as

30 XN,
axi o ax[ 7

(39)
=1
where Qj denotes the nodal value of Q at gridpoint j of the element. The derivatives of the linear shapefunc-

tions in Eq. (38) in the global (x, y) coordinate system can be derived analytically [16]

2 A 3 2 3 2 A 3 2 3
aﬁ g | —Yca ‘H’BAg 5 QN g ! QXCA—)CBAg
06 . BL _ Y9 B L _ _
Ox N c T 24, rea Ty NC T 24, ea ’ (40)
N —VBa N XBA

where A4, is the area of element e. The derivatives are constant functions and are based only on the location of
the gridpoints (see also Fig. 1), e.g., yca = ¥c — ya- If the grid does not change during computation, these
derivatives can be precomputed and stored in advance of timestepping.
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B(zs,y5) 1LC

A(xa,ya) A 1 ¢

Fig. 1. The decision whether a particle resides in a triangular element is made based on computing cross-products of element-edge vectors
and vectors of vertex-particle coordinates. E.g. N* is half of the signed area of the parallelogram spanned by vectors (rc —rg) and
(rp — rp). Also shown is the local coordinate system (&, #) of the triangle after a linear mapping with the finite element shapefunctions in
Eq. (38).

Second derivatives are obtained using a two-pass procedure. In the first pass the first derivatives (which are
constant over the element) are computed using Eq. (39) and then transferred to nodes by computing the aver-
ages of the elements surrounding nodes. The same procedure is applied to the derivatives in gridpoints in the
second pass to obtain second derivatives.

3.5. Estimation of the velocity-conditioned scalar mean

Eq. (24) requires the estimation of the scalar mean conditioned on the velocity field (¢|U = V) or (¢|FV) for
short. In the CErrent case, this is defined as

@V) = yf(o,y|V)dody, (41)

where the conditional PDF is usually expressed through Bayes’ rule using the full PDF f(V,w,) and the
marginal PDF of the velocity f (V) as

IV, 0. ¥) (42)

fv)

Mathematically, the conditional mean (¢|V) defines a mean value for each combination of its conditional
variables, i.e., in a three-dimensional flow, in every spatial and temporal location (¢| V) is a function that asso-
ciates a scalar value to a vector, (¢|V) : R® — R. In practice, this means that the velocity-sample space needs
to be discretized (divided into bins) and different mean values have to be computed for each bin using the par-
ticles whose velocities fall into the bin. In order to keep the statistical error small this procedure would require
a large number of particles in every element. To overcome this difficulty, Fox [56] proposed a method in which
the three-dimensional velocity space is projected onto a one-dimensional subspace where the discretization is
carried out. This substantially reduces the need for an extensive number of particles. This projection method is
exact in homogeneous turbulent shear flows, where the joint velocity PDF is Gaussian. Nevertheless, in more
complex situations it can still be incorporated as a modeling assumption.

A more general way of computing the conditional mean is to use three-dimensional binning of the veloctiy
sample space V. In order to homogenize the statistical error over the sample space, the endpoints of the con-
ditioning bins in each direction can be determined so that the distribution of the number of particles falling
into the bins is as homogenecous as possible. For a Gaussian velocity PDF this can be accomplished by using
statistical tables to define the endpoints [56]. If the underlying velocity PDF is not known, however, another
strategy is required. Note that there is absolutely no restriction on the distribution of the conditioning inter-
vals. In other words they need not be equidistant, need not be the same (or even the same number) in every
dimension and can also vary from element to element. Only some sort of clustering of the particles is needed,
i.e., grouping them into subgroups of particles with similar velocities. A simple algorithm that accomplishes
this task is as follows. Without loss of generality, we assume that a sample-space binning of (2 x 2 x 2) is
desired. In a first step all particles residing in the given element are sorted according to their I/ velocity com-
ponent. Then the first and the second halves of the group are separately sorted according to their ¥ compo-
nent. After further dividing both halves into halves again, each quarter is sorted according to the W

flo.y|V)
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component. Finally, halving the quarters once again we compute scalar means for each of these 8 subgroups.
Naturally, the binning can be any other structure with higher (even unequal) number of bins if that is desir-
able, e.g., (5 x 5 x 5) or (4 x 12 x 5). This procedure defines the bins dynamically based on the criterion that
the bin-distribution of the number of particles be as homogeneous as possible. By doing that, it homogenizes
the statistical error over the sample space and also ensures that every bin will contain particles. This simple
procedure is completely general, independent of the shape and extent of the velocity PDF and dynamically
adjusts the bin-distribution to the underlying PDF in every element. It is also robust, since if the number
of particles in an element happens to be very low compared to the desired binning, e.g., we only have 5 par-
ticles for the 125 bins of a (5 x 5 x 5) binning structure, the above sorting & dividing procedure can be stopped
at any stage and the subgroups defined up to that stage can already be used to estimate the conditioned means.
In other words, if in the above example we require that at least 2 particles should remain in every subgroup we
simply stop after the first sort and only use two groups. An algorithm that accomplishes the conditioning step
after the particles have been sorted into subgroups is detailed in Appendix A.

3.6. Particle tracking

Particles have to be tracked continuously as they travel throughout the grid in order to identify which ele-
ment they contribute to when local statistics are computed. A variety of algorithms with different character-
istics have been developed to accomplish this task [65]. Since we use explicit timestepping, the particles will not
jump over many elements in a timestep, thus the fastest way to track particles is some sort of known-vicinity
algorithm [66]. The two-dimensional particle tracking employed here is as follows. If a particle is not in its old
element (where it was in the last timestep), it is searched in the next best element of the surrounding elements.
The knowledge of the next best element is a feature of the basic interpolation algorithm that is used to decide
whether the particle resides in a given element. The interpolation algorithm is based on FEM shapefunctions,
which are usually employed for approximating unknowns over elements (as it is used in Section 3.2 to discret-
ize the Eulerian equations and in Section 3.4 to approximate functions and their derivatives) and correspond
to a linear mapping between the global and local coordinates of the element, see also Fig. 1. We use these
shapefunctions here for interpolation in two dimensions, but this procedure can also be used in a three-dimen-
sional case with tetrahedra [66]. In the current two-dimensional case, evaluating two shapefunctions is suffi-
cient to decide whether the particle is inside of the element. The decision is made by the following
condition (see also Fig. 1)

if {(N®*>0) and (N®>0) and (N*+N°) <4} (43)
inside
else

outside

where 4, is the total area of the element, while N* and N are the signed half-lengths of the cross-products

N =2 (v —ra) x (s~ ra)]. (44)
NC:%|(rP—rB) X (ra —rp)l. (45)

Note that these are also the area coordinates of the triangle corresponding to the nodes A and C and also the
values of the finite element shapefunctions corresponding to the three nodes, Eq. (38), evaluated at the particle
location P. A convenient feature of this procedure is that once the values N*, N and N® = 4, — N* — N € are
evaluated, in case the particle is not found in the element, they also give us a hint about the direction of the
particle location that is outside of the element. If condition (43) is not satisfied, at least one of N*, N® and N©
is negative. The next best element is in the direction corresponding to the lowest of the three values. Combin-
ing this with a data structure (e.g., a linked list [16]) that stores the element indices surrounding elements, we
can easily and efficiently identify which element is most likely to contain the particle or at least which direction
to search next. Most of the time, the particles do not jump out of their host elements, but if they do, this pro-
cedure finds them in usually 2-3 steps.
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The above neighbor-to-neighbor algorithm performs very well in the domain, but it may fail to jump over
concave boundaries, resulting in a dead-lock [66]. In order to remedy this problem the following strategy is
employed. An element on the boundary has two surrounding elements at most and the ones that would be
outside of the domain are tagged in the data structure that stores the three element indices surrounding ele-
ments, see also Fig. 2. If this tagged element is returned as the next best guess, the particle is on the other side
of a concave section (or a corner) of the boundary. Since even in this case the particle must be close to its old
host element, the particle is searched next in all elements surrounding the nodes of its old host element. (This is
also stored in a linked list for fast access.) This fall-back procedure always finds the particle around a corner,
thus a brute-force search is not necessary over all elements.

3.7. Particle-number control

In the setup phase an equal number of particles are uniformly generated into each element with the initial
velocities U; sampled from a Gaussian distribution with zero mean and variance 2/3, i.e., the initial Reynolds
stress tensor is isotropic with unit turbulent kinetic energy, wu; = 3%J;;. Initial particle frequencies  are
sampled from a gamma distribution with unit mean and variance 1/4 and the scalar concentration y is set
to 0.

During the timestepping procedure a sufficient number of particles have to be present in every element at all
times to keep the deterministic error due to bias small [67]. However, the grid can be refined differently in dif-
ferent regions of the domain, as it is done at walls to resolve the boundary layer or around a concentrated
source of a passive scalar to capture the high scalar gradients. Since the particles themselves model real fluid
particles, at locations where the grid is refined more particles are necessary for an increased resolution. There-
fore it is reasonable to keep the element-distribution of the number of particles as homogeneous as possible.
Particle-number control is a delicate procedure in PDF methods, because external modification of the particle
locations or properties may result in undesired changes of the local statistics and the joint PDF itself. Never-
theless, particle splitting and merging techniques are routinely applied to keep the particle distribution reason-
able and to improve the efficiency and stability of the simulation [68]. Appendix B describes the algorithm that
we developed to keep the number of particles per element above a certain treshold and to guard the simulation
against the occurrence of empty elements (i.e., elements without particles).

In what follows, we describe a simple testcase to investigate the error introduced by the particle redisitri-
bution. Note that the traditional way of referring to this procedure is particle splitting and merging. Since
we do not change the total number of particles throughout the simulation (which is more memory efficient

N

e boundary
new host element

tagged element of the
old host element

old host element

I

Fig. 2. A particle jumping over a concave corner on the boundary and the next best guess based on its old host element would be through
the boundary, outside of the domain. A fall-back procedure finds the new host element of the particle by searching the elements
surrounding the nodes (displayed with thicker edges) of its old host element.
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than splitting and merging) we refer to this procedure as particle redistribution. To investigate the error, we
consider the simplified Langevin equation (10) without viscous effects [69].

Xm' == Z/[,‘dt, (46)
di; = — (U; — a(U;)) dt + V2d W, (47)

where o is a scalar parameter and the initial conditions for ; are taken to be independent, standardized, nor-
mally distributed random variables:
<U,> = 0, Ll,‘uj = 5ij' (48)

The mean (U;) of the solution of the stochastic differential Eq. (47) is the solution of the following linear deter-
ministic differential equation [70]

dgo = ~((U)) = «(U)), :
(Up)(t=0)=0. :

It can be seen that the trivial solution (U;) = 0 satisfies the above deterministic initial value problem. For a
nonzero initial condition the solution of Eq. (47) is stable and reaches steady state if o < 1 with (U;) =0
and wu; = 0;. For o > 1 the equation becomes unstable and the solution grows exponentially, while for
o = 0 the equation is neutrally stable. For our purposes we use « = 0.5. Eqgs. (46) and (47) are advanced on
a rectangular domain with two free-slip walls (from where particles are simply reflected) and a periodic in-
flow/outflow boundary-pair, see Fig. 3. The domain is highly stretched on purpose in the y direction. Initially,
an equal number of particles are generated into every element, which in the current case results in a spatially
inhomogeneous particle distribution. As the timestepping advances the particles naturally tend to evolve into a
spatially homogeneous distribution, which may result in empty elements in the highly refined region if the
number of particles is too small. This is circumvented by the particle-redistribution algorithm.

We will test the algorithm by calculating the time-evolutions of the spatial average of the diagonal compo-
nents of wu; , indicated by wuu; , using different initial number of particles per element N, . In order to
ensure that the particle-redistribution algorithm intervenes on the same level in each case, the ratio

A

free-slip walls

periodic
inflow/outflow

Fig. 3. A rectangular domain with a stretched grid to test the error introduced by the particle-redistribution algorithm using Eqgs. (46) and
(47).
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— o< number of particles moved (51)

is kept constant. In other words, as the initial number of particles N,/ is increased, we increase the required
minimum number of particles per element N;“: as well, so that the number of particles that will have to be
moved is approximately the same, hence the algorithm intervenes at the same level. To verify that this is
the case, the number of times the redistribution algorithm is called (the number of particles moved in a time-
step) is monitored and plotted in Fig. 5 for the different cases.

Fig. 4 depicts w;u; for different values of N,.. It can be seen in Fig. 4a that the algorithm reproduces the
analytical solution with a given numerical error. This error, which is always present in the numerical solution
of stochastic differential equations, can be decomposed into three different parts: truncation error due to finite-
size timesteps, deterministic error (or bias) due to the finite number of particles employed and random (or sta-
tistical) error [67]. The particle redistribution introduces an additional error which is directly visible by com-
paring Figs. 4a and d. It is also apparent that the bias decreases with increasing number of particles as it can be
expected. However, Figs. 4b—f also show that the additional error introduced by the particle redistribution
also diminishes as the number of particles increase while the intervention of the redistribution, Eq. (51), is kept
at a constant level. This can be seen more directly in Fig. 6, which depicts the evolution of the total relative
numerical error defined as

ke k,
ke

where k. and &, denote the computed and analytical turbulent kinetic energy, respectively. This error incor-
porates both the usual numerical errors and the additional one due to the particle-redistribution algorithm.
For comparison, the evolution of the error without particle redistribution is also displayed. Since the total
sum of the errors converges to zero, the error introduced by the redistribution algorithm also diminishes
and the solution converges to the PDF without redistribution.

We have found that a particle-redistribution algorithm of a similar sort (or particle splitting and merging) is
essential to provide adequate numerical stability in modeling inhomogeneous flows especially in complex

(52)
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Fig. 4. Time-evolutions of the diagonal components of wuu; solving Egs. (46) and (47) employing different number of particles. (a) No
redistribution with initial number of particles per element N, = 200; redistribution with (b) N, = 50, (c) N, = 100, (d) N,/ = 200, (e)
Npje =400 and (f) N,/ = 800, respectively. The ratio N/, /N!’,“/ijzlo is kept constant for cases (b—f). The horizontal line at the ordinate 1
depicts the analytical solution at steady state.
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Fig. 5. The number of particles moved in each timestep by the particle-redistribution algorithm for different total number of particles. In

the legend the constant N, /N;’/‘;‘ ratio is displayed.
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Fig. 6. Evolution of the total relative numerical error defined by Eq. (52) with increasing number of particles. Solid line — with
redistribution, dashed line — without redistribution.

geometries. In addition, it also dramatically reduces the need for high number of particles per elements on
stretched grids.

3.8. Wall-boundary conditions

Over any given time-interval a particle undergoing reflected Brownian motion in the vicinity of a wall may
strike the wall infinitely many times [41]. This means that particles can follow three different trajectories when
interacting with walls. The particle either (a) crosses the wall during the timestep and it is behind the wall at
the end of the timestep or (b) crosses the wall during the timestep but it is not behind the wall at the end of the
timestep or (c) does not cross the wall during the timestep. Therefore wall-conditions have to be enforced on
particles that follow trajectory (a) and (b). The probability that the particle following trajectory (b) crossed the
wall during timestep Az can be calculated by [71]
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dndn+1
vAt

fv=exp - (53)

where d" denotes the distance of the particle from the wall at timestep n. Thus, particle wall-conditions are
applied if

d""' <0, trajectory (a), (54)
or if

d""'>0 and 5 <f,, trajectory (b), (55)
where 5 is a random variable with a standard uniform distribution. The new particle location is calculated
based on perfect reflection from the wall, the particle velocity is set according to the no-slip condition

U; = 0. (56)

A boundary condition on the characteristic turbulent frequency w has to ensure the correct balance of the tur-
bulent kinetic energy at the wall [41] and has to be consistent with the near-wall kinetic energy equation

ok

on?
where n is the outward normal of the wall. Accordingly, the particle frequency for a particle striking the wall is
sampled from a gamma distribution with mean and variance respectively [41]

D E
1 dv2k
(w) = o C{v and (0 — () = Cy(w)’. (58)
For better performance the above particle conditions are only tested and enforced for particles that reside
close to walls, i.e., elements that have at least an edge or a node on a no-slip wall-boundary.
Following [41], the wall-boundary condition for the elliptic relaxation Eq. (12) is set according to

p,; = —4.5enn;. (59)

+e=0, (57)

For the pressure-Poisson Eq. (33), a Neumann-condition is obtained from the Eulerian mean-momentum
equation

i - == i/ — —, 0
a T U o VU T (60)
by taking the normal component at a stationary solid wall
1 3(P) oHUY 0w
- i = i~ i 1
P ax,- " Y ax/axj " axj " (6 )

3.9. Parallel random number generation

The solver has been parallelized and run on different shared memory architectures. Both the initialization
and the timestepping require a large number of random numbers with different distributions and characteris-
tics. Two components of the position X; and three components of the velocity U; are retained for a two-dimen-
sional simulation, therefore the governing equations (7), (10) and (19) altogether require 6 independent
Gaussian random numbers for each particle in each timestep. Since these 6 numbers per particle are always
needed and are always Gaussian, they can be efficiently stored in a table, which is regenerated in each timestep.
Different methods exist to efficiently sample pseudo-random numbers in parallel [72]. In order to be able to
reproduce the simulation results and to avoid surpassing cross-correlations between random number streams,
we initialize a single stream and split it into k non-overlapping blocks, where k is the number of parallel
threads. Then each of the threads generates from its own corresponding block, avoiding data races with other
threads. This can be quite efficient, since a large amount of random numbers are generated at once and each
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thread accesses only its own portion of the stream. The same block-splitting technique is used to fill another
table with uniform random numbers for the boundary condition Eq. (55). Using this sampling technique, an
almost ideal speedup can be achieved when random numbers in tables are regenerated, see also Table 1. For
those equations in which the number of random numbers is a priori unknown (e.g., sampling a gamma dis-
tribution for the wall-condition of Eq. (58) for particles that struck the wall), a stream is split into k disjoint
substreams and the leap-frog technique is used to sample from them in parallel [73]. These techniques have
been found essential to achieve a good parallel performance for the loop advancing the particles, see also Sec-
tion 3.10.

3.10. Solution procedure and execution profile

The main stages of one complete timestep in their order of execution are displayed in Table 1. Also shown
are the percentage of the execution times of each stage relative to a complete timestep and their speedups on a
machine with two quad-core processors. The performance data were obtained by running a case that con-
tained approximately 10 million particles and the Eulerian grid consisted of about 20 thousand triangles.

A significant portion of the execution time is spent on advancing the particle-governing equations. This is
mostly a loop which can be constructed in two fundamental ways: in an element-based or in a particle-based
fashion as displayed in Table 2.

The main advantage of the element-based loop is that once the Eulerian statistics are gathered for an ele-
ment they can be used to update all particles in the element without recomputing them. However, it can be
significantly off-balance in parallel, since it is not rare that the number of particles per element can differ
by as much as two orders of magnitude at different regions of the domain. Another disadvantage of the ele-
ment-based loop is that most of the time it accesses the arrays containing the particle properties, X;, U;, o, ¥,
in an unordered fashion resulting in increasing cache misses as the timestepping progresses and the particles
move throughout the domain, because they get scrambled in memory compared to their spatial locations.
Conversely, the big advantages of the particle-based loop are its simplicity and excellent load-balance for par-
allel execution. The particle-based loop always accesses the arrays containing particle properties consecutively.
The effect of the increasing cache misses and the different load-balance on the performance is displayed in
Fig. 7, where the timings of the two loops are compared as the iteration progresses. The element-based loop

Table 1
Structure and profile of a timestep with relative execution times compared to the time spent on the full timestep and parallel performances
of each step on a machine with two quad-core processors

Task Relative execution Speedup with Speedup with Speedup with Speedup with
time (%) 2 CPUs 4 CPUs 6 CPUs 8 CPUs
Compute the size of the next timestep, 0.001 not parallelized
see Section 3.1
Solve elliptic relaxation Eq. (12), see 2.87 1.91 4.08 5.76 7.60
Section 3.2
Advance particle properties according 73.2 2.02 4.12 6.16 8.20
to Egs. (7), (10), (19) and (24)
Regenerate random number tables, 19.01 2.01 3.99 5.79 7.50
see Section 3.9
Solve pressure-Poisson equation, 2.0 1.86 3.49 4.55 5.02
see Section 3.2
Correct mean velocities, see Section 3.2 1.0 1.69 1.95 1.94 1.96
Compute Eulerian statistics, see 1.6 1.22 1.79 1.67 1.77

Sections 3.3-3.5
One complete timestep 99.68 1.98 3.95 5.55 7.20

The listing order corresponds to the order of execution. The performance data is characteristic of a case with 10 M particles using a grid
with 20 K triangles, the simulation altogether requiring approximately 1.2 GB memory. The processors are two quad-core CPUs (8 cores
total), each pair sharing 4 MB cache and the CPU-to-memory communication bandwidth.
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Table 2
Two fundamental ways of constructing a loop to advance the particle-governing Eqs. (7), (10), (19) and (24)
for all Eulerian elements e Pre-compute element-average statistice;
gather Eulerian nodal statistics for element e; for all particles p
compute element-average statistics; obtain index e of host element for particle p;
for all particles p in element e get element-average Eulerian statistics for element e;
advance particle p; advance particle p;
end end
end

Left — element-based loop, right — particle-based loop.
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Fig. 7. Performance comparison of the two different loops (displayed in Table 2) to advance the particle governing Eqs. (7), (10), (19) and
(24) for the first 500 timesteps using 8 CPUs. The almost horizontal (red) line represents the particle-based loop, while the curving (black)
one is the element-based loop. The problem size is the same as in Table 1.

slows down almost fourfold in just 500 timesteps, while the performance degradation of the particle-based
loop is negligible. Also, this disparity increases as the number of threads increases, which is shown in Table
3, where serial and parallel timings are displayed for both loops with different number of threads. While
the element-based loop slightly outperforms the particle-based loop on a single CPU, the high scalability
and cache-efficiency of the particle-based loop pays out very well in parallel. In fact its speedup is superlinear,
which is due to the fact that as the number of processors increase, more and more data gathered from memory
fit into the aggregate cache of the individual CPUs, resulting in faster processing than from central memory.

Cache misses may also be reduced by specifically optimizing for the architecture of shared caches on mul-
ticore CPUs as it has been done in the current case. We have found that this guarantees a good performance

Table 3
A comparison of serial and parallel performances for a single timestep of the most time-consuming loop, implementing the governing
equations to advance particles, Egs. (7), (10), (19) and (24), using the two different loop-structures displayed in Table 2

Element-based loop Particle-based loop
Number of CPUs Time (ms) Speedup Time (ms) Speedup
1 6909 1.0 8068 1.00
2 4122 1.68 3987 2.03
4 2408 2.87 1943 4.12
6 1979 3.49 1305 6.16
8 1945 3.55 1000 8.20

The data is obtained from the same test simulation as in Table 1 using the same hardware. The timings are approximate values after the
first 500 timesteps.
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Fig. 8. Overall parallel performance of 100 timesteps taken on two different types of shared memory machines. Solid line and symbols —
separate caches and memory-to-CPU bandwidths for each processor, dashed line and open symbols — two quad-core CPUs (8 cores total)
each pair sharing a cache and a memory-to-CPU bandwidth. The problem size is the same as in Table 1.

on true shared memory machines as well, i.e., on machines whose CPUs do not share their caches and the
communication bandwith between the CPU and memory. However, optimizing for non-shared caches and
communication bandwidths does not necessarily guarantee optimal performance on multi-core CPUs. These
findings clearly show the importance of efficient use of caches. This was also noted with Eulerian CFD codes
computing a variety of flows [74].

The parallel performance on higher number of processors is plotted in Fig. 8. The size of the testproblem is
the same as in Table 1, but the hardware is now a true shared memory machine with separate cache and mem-
ory-to-CPU bandwidth for each processor. The code performs reasonably well for this moderate-size problem
and the parallel efficiency does not show a sign of leveling out up to the 32 CPUs tested. For comparison, the
performance data in Table 1 is also shown using mutli-core CPUs.

Table 1 shows that the second most time-consuming step in a timestep is the regeneration of the random
number tables, which was discussed in Secion 3.9. Interestingly, the solution of the two Eulerian equations,
namely the elliptic relaxation Eq. (12) and the pressure-Poisson Eq. (33), only take up about 2-3% of a time-
step, respectively. It is worth noting that the linear system for the elliptic relaxation is nine times larger than
that of the pressure-Poisson equation. The former is very well conditioned, while the latter is usually the most
time-consuming equation to solve in modeling laminar incompressible flows.

4. Testcases

Two testcases demonstrate the applicability of the algorithm: a fully developed turbulent channel flow and
a street canyon (or cavity) flow both with passive scalar releases from a concentrated source. For validation,
several statistics are compared to direct numerical simulation (DNS) and experimental data. The effects of var-
ious numerical parameters on the results, such as the number of conditioning bins in the estimation of (¢|V)
or the number of particles, are also analyzed in the next subsections.

4.1. Scalar dispersion in fully developed turbulent channel flow

The velocity field in turbulent channel flow, after an initial development time, becomes statistically station-
ary and homogeneous in the streamwise direction, while it remains inhomogeneous in the wall-normal direc-
tion, i.e., the flow becomes statistically one-dimensional. The flow is assumed to be statistically symmetric
about the channel centerline. A passive scalar released into this flow is inhomogeneous and three-dimensional.
Assuming the channel cross section has a high aspect ratio, we confine our interest to the plane spanned by the
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wall-normal and streamwise directions, far from the spanwise walls. The computational scheme exploits these
features by resolving only one spatial dimension for the velocity statistics and two dimensions for the passive
scalar. Although this specialized implementation of the method includes flow-dependent features, it provides
good indication of the total computational cost. The description is divided into sections that separately discuss
the modeling of the fluid dynamics (Section 4.1.1) and the transported scalar (Section 4.1.2). Both DNS and
experimental data are used to validate the results.

4.1.1. Modeling the fluid dynamics

Since the transported scalar is inhomogeneous, both streamwise x and cross-stream y components of the
particle positions are retained. A one-dimensional grid is used to compute Eulerian statistics of the velocity
and turbulent frequency. An increasing level of refinement is achieved in the vicinity of the wall by obtaining
the spacing of the gridpoints from the relation

yT =1-—cos ga3/4 , 0<a<], (62)

where y™ = u,y/v is the distance from the wall non-dimensionalized by the friction velocity u, and the kine-
matic viscosity v and « is a loop-variable that equidistantly divides the interval between 0 and 1 (wall and cen-
terline, respectively) into a desired number of gridpoints. The centerline symmetry of the flow is exploited, thus
these statistics are only computed on half of the channel. Using this one-dimensional grid, Eulerian statistics
are computed as described in Section 3.3. First and second derivatives of the mean velocity are calculated by
first-order accurate finite difference formulas over each element and then transferred to nodes. A constant unit
mean streamwise pressure gradient is imposed, which drives the flow and builds up the numerical solution.
The cross-stream mean-pressure gradient is obtained by satisfying the cross-stream mean-momentum equation
for turbulent channel flow
2
1dp) d?) .
p dy dy
which implies that the pressure-projection is not necessary for this flow. Since the number of elements do not
exceed 100, particle tracking in this one-dimensional case is simply a brute-force check on each element. This is
a negligible fraction of the running time, thus there is no need for a more sophisiticated tracking algorithm.
Wall-boundary conditions for the particles are the same as described in Section 3.8, only the situation is sim-
pler here, since the wall is aligned with the coordinate line y = 0. The conditions for the centerline are symmetry
conditions, i.e., particles trying to leave the domain through the centerline undergo perfect reflection and the
sign of their wall-normal velocity is reversed. Consistently with these particle conditions, boundary conditions
are imposed on the Eulerian statistics as well. At the wall, the mean velocity and the Reynolds stress tensor is
forced to zero. The mean frequency (w) is set according to Eq. (58). At the centerline, the shear Reynolds stress
(uv) is set to zero. At the wall in the elliptic-relaxation Eq. (12), p;; is set according to p,; = —4.5enn;. In the
current case the wall is aligned with y = 0 thus only the wall-normal component is non-zero: p,, = —4.5¢.
At the centerline, symmetry conditions are enforced on g, , i.e., homogeneous Dirichlet-conditions are applied
for the off-diagonal components and homogeneous Neumann-conditions for the diagonal components. The ini-
tial conditions for the particles are set according to Section 3.7, however the current one-dimensional case
enables the use of a sufficient number of particles so that there is no need for particle redistribution. The applied
model constants for the joint PDF of velocity and frequency are displayed in Table 4.

4.1.2. Modeling the passive scalar
A passive, inert scalar is released from a concentrated source into the modeled fully developed turbulent
channel flow, described above. Since the scalar field is inhomogeneous and, in general, not symmetric about

Table 4
Constants for modeling the joint PDF of velocity and frequency
Ci &) Cs Cy Cr Cr C Co Vs Col Con

[
1.85 0.63 5.0 0.25 6.0 0.134 72.0 1.4 0.1 0.5 0.73
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the channel centerline, a second, two-dimensional grid is employed to calculate scalar statistics. Employing
separate grids for the fluid dynamics and scalar fields enables the grid refinement to be concentrated on dif-
ferent parts of the domain, i.e., the scalar-grid can be refined around the source, while the fluid dynamics-grid
is refined at the wall. The two-dimensional mesh is used to calculate Eulerian scalar statistics as described in
Section 3.3. Since the scalar statistics are not homogeneous in the streamwise direction, the long rectangular
domain is subdivided into several bins (thin vertical stripes, see Fig. 9) and the following strategy is used to
exploit these features. The velocity and turbulent frequency statistics are computed using the one-dimensional
grid in which only particles in the first bin participate. The position of these particles are then copied to all
downstream bins and (since the fluid dynamics is symmetric about the channel centerline) these particle posi-
tions are also mirrored to the upper half of the channel. This means that the particles (as far as positions are
concerned) never leave the first bin physically. Since the scalar is passive, only one-way coupling between the
two grids is necessary. This is accomplished by using the local velocity statistics computed in the 1d-elements
for those 2d-elements that lie the closest to them in the wall-normal coordinate direction. At the wall and cen-
terline boundaries the conditions on the particle properties have already been described in Section 4.1.1. For
particles trying to leave the bin through the “inflow/outflow” bin-boundaries a periodic boundary condition is
applied, with leaving particles put back on the opposite side. This essentially means that the particle paths
remain continuous (as they should), only the code accounts for them as different particles in the computer
memory. In order to carry the scalar concentration through bin-boundaries, the particle-scalar y is copied
downstream (upstream) when the particle tries to leave through the downstream (upstream) bin-boundary.
If the particle hits the centerline, its concentration is exchanged with its mirrored pair on the upper half, facil-
itating a possible non-symmetric behaviour of the scalar. The line-source, which in the current two-dimen-
sional case is a point-source, is represented by a circular source with diameter 0.05 v/u,. The scalar at the
source has a constant distribution: particles passing through the source are assigned a constant normalized
unit source strength, i.e., = ¢, = 1. The applied model constants for the micromixing timescale defined
by Eq. (25) are C;, = 0.02 and C, = 0.7.

particle positions mirrored

binsize = 0.1

o

A

flow

length of channel = 10.9

“inflow/outflow” bin-boundaries

particle positions copied downstream
particles participating in computation of fluid dynamics
Fig. 9. The computational domain for the channel flow is subdivided into several bins to exploit the streamwise statistical homogeneity of
the turbulent velocity and frequency fields. Particle positions are copied downstream and mirrored to the upper half. Particle scalar

concentrations are exchanged through bin-boundaries and the centerline. Note, that the number of particles in the figure does not
correspond to the actual number used in the simulation.
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4.1.3. Results for channel flow

Previous PDF modeling studies of channel flow in conjunction with elliptic relaxation have been reported at
Re, =395 [41] and Re, = 590 [78] based on the friction velocity u, and the channel half-width /4. These works
concentrate on model development and employ different methodologies with different model constants and
numerical methods, which inevitably result in a different balance of model behavior and numerical errors.
To assess the prediction at different Reynolds numbers the current model has been run at Re, = 392, 642
and 1080 using the model constants displayed in Table 4. The velocity statistics for all three cases are depicted
in Fig. 10. The mean velocity is well represented in the viscous sublayer (y™ < 5) for all three Reynolds num-
bers. In the buffer layer (5 < y* < 30) there is a slight departure from the DNS data as the Reynolds number
increases and from y* > 30, where the log-law should hold, there exists approximate self-similarity, i.e., the
universal slopes of the profiles are equally well-represented with a slight underprediction far from the wall
at higher Reynolds numbers. The viscous wall region (y* < 50) contains the highest turbulent activity, where
production, dissipation, turbulent kinetic energy and anisotropy reach their peak values. The location of the
peaks of the Reynolds stress components are succesfully captured by the model at all three Reynolds numbers
with their intensity slightly underpredicted. Previous studies using elliptic relaxation in the Reynolds stress
framework (i.e., Eulerian RANS models) report excellent agreement for these second-order statistics
[40,51]. Wactawczyk et al. [78] also achieve very good agreement with DNS data using a different version
of a PDF model than the one applied here. A common characteristic of PDF models is the slight overpredic-
tion of the wall-normal Reynolds stress component (1?) far from the wall. This component is responsible for
the cross-stream mixing of a transported scalar released into a flow far from a wall. Therefore in applications
where the mean concentration of scalars is important this quantity must be adequately captured. To improve
on this situation we introduced a slight modification into the computation of the characteristic lengthscale L in
the elliptic relaxation Eq. (16) compared to [41], by inserting the parameter C;: as described in Section 2. This
only affects the diagonal Reynolds stresses which can be seen in Fig. 11 for the different Reynolds numbers.
Decreasing (1?) at the centerline changes the relative fraction of energy distributed among the diagonal com-
ponents of the Reynolds stress tensor, consequently the other two components, (u?) and (w?), are slightly
increased. Obviously, these kind of flow-dependent modifications in the turbulence model are of limited value,
since their effects in a general setting may not be easily predictable. The only nonzero shear stress component
(uv) in this flow and the turbulent kinetic energy dissipation rate ¢ are both in very good agreement with DNS
data and even improve as the Reynolds number increases. It is apparent in both Figs. 10 and 11 that the over-
all prediction of second order statistics improve as the Reynolds number increases. This tendency is expected
to continue as the underlying high-Reynolds-number modeling assumptions become better fullfilled.

Into the fully developed flow, a passive scalar has been released from a concentrated source at the channel
centerline. A general numerical procedure that can be used to compute the velocity-conditioned scalar mean
(¢]¥) in the IECM model has been described in Section 3.5. Another method based on the projection of the
three-dimensional velocity field onto a one-